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Linear analysis of pattern formation in nematics in oblique

magnetic ® elds

J. P. CASQUILHO*
Departamento de Fõ Â sica, Faculdade de CieÃ ncias e Tecnologia,

Universidade Nova de Lisboa, Campus do Monte da Caparica,
2825-114 Caparica, Portugal

(Received 7 July 1998; in ® nal form 21 October 1998; accepted 2 November 1998 )

The dynamics of nematic director ® eld reorientation in non-FreÂ edericksz geometries, after a
magnetic ® eld H is applied at an oblique angle relatively to the initial homogeneous director
n0 (H not normal to n0 ), is studied considering a magnetic reorientation driven by hydro-
dynamic instabilities (with back¯ ow). This study is carried out for bounded samples between
two parallel plates with planar boundary conditions and with rigid anchoring. Linear stability
and wave vector selection analysis predict that, when the angle of the magnetic to the initial
director ® eld is increased, for a given magnetic ® eld intensity, two transitions from a
homogeneous to a transient distorted director ® eld reorientation can occur: a transition at a
® rst critical angle to an aperiodic distorted director ® eld and a transition at a second critical
angle to a periodic distorted director ® eld. It is shown that the periodic mode is cut oV at a
higher reduced ® eld when the magnetic ® eld acts away from the normal direction.

1. Introduction

The dynamics of nematic liquid crystals under
external ® elds provide fascinating examples of non-
linear phenomena in far from equilibrium systems. The
formation of ordered patterns in samples as a transient
response to a destabilizing magnetic and/or electric ® eld
is one striking feature [1, 2]. The study of the external
® eld induced instabilities in nematic liquid crystals is of
great importance for the operation of many liquid crystal
displays. In this work the possibility of the formation
of a transient periodic distortion in the director ® eld
induced by an applied oblique magnetic ® eld in non-

Figure 1. De® nition of the sample geometry. The directorFreÂ edericksz geometries is investigated theoretically
and the magnetic ® elds are in the (xz) plane. Homogeneoususing a dynamical stability analysis. This study will be initial orientation of the director: n0 = (0, 0, 1). Magnetic

presented here with the help of the Ericksen± Leslie ® eld: H = (H sin a, 0, H cos a). Perturbed director: n =
nematic hydrodynamic theory [1, 2]. (sin h, 0, cos h). The sample is bounded in the OY direction;

the plates are parallel to the (xz) plane and cut the OYWhen a magnetic ® eld H is applied at an angle a with
axis at y = Ô d/2.respect to the homogeneous director ® eld n0 of a nematic

liquid crystal monodomain (H not normal to n0 , as
an induced back¯ ow should then be involved [4± 6].shown in ® gure 1) the director ® eld reorients towards
Accordingly, a non-zero velocity ® eld v has to bethe magnetic ® eld to an equilibrium con® guration deter-
considered in the general study of the dynamics of thismined by the balance between the magnetic and the elastic
magnetic reorientation, as shown by several studies oftorques acting on it. There is experimental evidence that
the magnetic and/or electric ® eld induced instabilities inthis magnetic reorientation of the director can be either
FreÂ edericksz geometries [9± 16]. Although the subjectuniform or inhomogeneous in space, depending on the
of the external ® eld induced instabilities in liquid crystalsmagnitude of the angle a [3± 8]. In the last case the
continues to receive attention from scientists workingreorientation of the director may result in a transient
in this area since the pioneering work of Brochardperiodic pattern, giving rise to striped textures, and
and co-workers [17], the dynamical problem in non-
FreÂ edericksz geometries, i.e. where H is taken at an*e-mail: jp@mail.df.fct.unl.pt
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518 J. P. Casquilho

arbitrary angle with respect to n0 , is poorly understood. a two dimensional director ® eld is su� cient to predict
that the periodic mode will be cut oV at a higher reducedFollowing the study of Karn and co-workers on the

bistability and dynamical response (neglecting back¯ ow) ® eld when the magnetic ® eld acts away from the normal
direction. Critical sample thicknesses dc1 and dc2 are putof a nematic cell induced by the sudden rotation of an

applied magnetic ® eld [18], Kini [19] approached the in evidence for the aperiodic and the periodic deformed
director reorientations, respectively. It is shown thatproblem in the case where H is slowly rotated away

from n0 (for nematics with positive anisotropy of the both critical thicknesses depend on the magnetic
coherence length and that dc2 is also dependent onmagnetic susceptibility xa ), in which case it can be

treated under statics by neglecting transient eVects. A several viscoelastic parameters.
dynamical analysis was then attempted by studying the
stability of the static solutions, corresponding to homo- 2. Mathematical model

geneously deformed con® gurations, but no transient Consider a bulk nematic aligned monodomain. A
periodic structure was reported. Experimentally, in order magnetic ® eld H = (H sin a, 0, H cos a) is applied at an
to get the striped texture, the magnetic ® eld is suddenly angle a with respect to the initial homogeneous director
applied at (or rotated by) an angle a which has to exceed n0 = (0, 0, 1), as shown in ® gure 1. The dynamics of the
a critical value in the case xa>0 [6] or be smaller than a nematic director ® eld will be studied using the Ericksen±
critical value in the case xa <0 [4]. In a static analysis Leslie equations [1]. To study this dynamics in the case
[20, 21] the minimization of an ansatz based distortion of a twist± bend instability, the following general velocity
Frank free energy could explain the existence of such a and director ® elds are considered:
critical angle separating the uniform director magnetic

vx (y, z, t), vy= vz = 0 (1 a)reorientation from the periodically distorted director
reorientation. Here, the corresponding dynamical linear nx= sin h(y, z, t ), ny= 0, nz = cos h(y, z, t) (1 b)
analysis is attempted.

which obey the usual constraints of incompressibility ofThe goal of this work is to study an instability driven
the ¯ uid and unit vector n.magnetic reorientation in the bulk of a nematic mono-

In order to study the transition from the homogeneousdomain following the sudden application of an oblique
to the instability driven reorientation of the directormagnetic ® eld at an arbitrary angle a with respect to
® eld, the stability of the uniform reorientation with respectthe unperturbed director (or equivalently, the previously
to the development of a twist± bend deformation willaligned sample is suddenly rotated with respect to the
be analysed. Standard linear stability analysis will bemagnetic ® eld, as in the NMR experiments with polymer
followed, valid near the transition point. Therefore,liquid crystals (PLC) reported in [3, 5± 8]). Back¯ ow
for the velocity and director ® elds (1) the followingis taken into account. The study considers bounded
functions will be takensamples between two parallel plates with planar boundary

conditions and rigid anchoring, corresponding to the
twist FreÂ edericksz transition geometry when a= 90ß .

vx (y, z, t )= 0 + j v(y, z, t )

h(y, z, t)= u (t)+ jh
(y, z, t )

(2)
The study is carried out for nematics with xa>0. A
dynamical linear stability analysis based on a two dimen- where the unperturbed solution u (t ) corresponds to the
sional director ® eld predicts two transitions from the uniform reorientation, and with the perturbations of
homogeneous to the distorted director ® eld reorientation the velocity and the director ® elds given respectively by
when the angle a is increased: a transition at a ® rst
critical angle ac1 to a non-periodic distorted state and a j v(y, z, t) ; vx = v0 (t ) cos (qy y) sin (qz z)

jh
(y, z, t)= h0 (t ) cos (qy y) cos (qz z)

(3)transition at a second critical angle ac2>ac1 to a periodic
distorted director. The existence of this second critical
angle, separating the aperiodical from the periodically representing a twist± bend distortion in the harmonic

approximation. The ansatz is consistent with thedistorted states, was envisaged by Kini [14] in the
context of results obtained in the study of magnetic ® eld planar boundary conditions at y = Ô d/ 2 of the twist

FreÂ edericksz geometry, with qy= p/d where d is theinduced transient periodic structures in a FreÂ edericksz
geometry. In this work a variational method is employed sample thickness in the OY direction [10].

The procedure adopted is as follows. In a ® rstthat allows it to be shown that ac1 and ac2 are dependent
on the applied magnetic ® eld, the sample thickness, the step, the ® elds (1) are inserted in the general dynamic

equations, from which there result two coupled non-magnetic parameter xa and a Frank elastic constant,
and that ac2 is also dependent on several Leslie and linear equations for h and vx . After inserting the ® elds

(2) in those equations, following standard stabilityFrank viscoelastic parameters. The limitations of this
mathematical model are discussed. The results show that analysis [22], one obtains the variational equations up
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519Pattern formation in nematics

to ® rst order in the perturbations j v and jh. The terms be linearized:
that cancel out in the variational equations correspond
to the uniform reorientation equation [1]: c1

du (t )

dt
+ Cu (t )=

1

2
xa H

2 sin 2a (10)

c1
du (t)

dt
= Õ

1

2
xa H

2 sin 2 [u (t ) Õ a] (4) where

Finally, the linearized equations for the perturbations C = xa H
2 cos 2a. (11)

around the unperturbed state, taken at the instant of
Equation (10) has the solutionapplying the ® eld, i.e. at u (t = 0)= 0, and using (3) read

u (t)=
sin 2a

2 cos 2a
[1 Õ exp(Õ tC /c1 )]. (12)r

dv0

dt
= Õ (ga q

2
y + gc q

2
z )v0 Õ a2 qz

dh0

dt
(5)

This result shows that u (t) diverges at a= p/4. It also
c1

dh0

dt
= Õ a2 qz v0 Õ ah0 ; F

h (6) shows that, in the limit t = 0, u (t ) actually becomes
indeterminate when a= p/4, which implies by equation (2)

where that the director de® ning angle h(t ) is also indeterminate
in the same limit. Equation (12) also shows that u (t ) isa = K 2 q

2
y + K 3 q

2
z + xa H

2 cos 2a. (7)
damped for a<p/4. The reason for this is that, in the

The viscoelastic parameters used in this work are the linear limit, the total magnetic torque becomes split into
Leslie viscosity coe� cients ai , i = 1, ¼ , 6, the Miesowicz two parts. With the de® nition of u (t) as in equations
viscosities de® ned by ga = a4 /2, gb= (a3 + a4 + a6 )/2 and (2), (4), (10) and (12), the part (1/2)xa H

2 sin 2a is
gc= (a4 + a5 Õ a2 )/2, and the splay, twist and bend Frank removed from the linear equations for the perturbations.
elastic constants K i , i = 1, 2, 3, respectively. While some The remaining torque term (11) has the property that it
of the Leslie viscosities are or may be negative, the has a destabilizing eVect for a>p/4 and a stabilizing
Miesowicz viscosities are positive parameters of the eVect for a<p/4. So the physical problem arising from
materials [1]. c1 is the rotational viscosity that is a equation (12) when a < p/4 is due to the fact that this
positive quantity de® ned by c1 = a3 Õ a2 and is the term does not fully represent the magnetic torque. This
eVective viscosity gtwist associated with a pure twist mode means that the results obtained via the equations (6, 8)
[1]. Only ® ve of the viscosity coe� cients are independent should only be correct for values of a not too far from
parameters [1]. the FreÂ edericksz geometries, the approximation becoming

To perform a stability analysis (Appendix) , this poorer when a approaches p/4. To study the whole range
system is put in canonical form with the substitution of 0<a<p/2, the solution of the coupled non-linear
equation (6) in (5), from which there results the equivalent equations for h and vx is then required.
system consisting of equation (6) and the following
equation

3. Wave vector selection and transition to distorted

state
r

dv0

dt
= Õ cv0 +

a2

c1
qz ah0 ; F v (8) The wavevector q of the distortion is an internal

parameter of the system. In order to study the stability of
where the system with respect to the control parameters, which

are the parameters of the material (the viscoelastic para-
c = ga q

2
y +

gcgbend

c1
q

2
z (9) meters and the anisotropy of the magnetic susceptibility)

and the external parameters (sample dimension d ,
where gbend is the eVective viscosity associated with a magnetic ® eld H and angle a), one should eliminate the
pure bend mode [1], and is a positive quantity de® ned parameter q by seeking its selected value. The wave
by gbend = c1 Õ a

2
2 /gc . vector is selected during the initial steps of the magnetic

reorientation. Accordingly, the method followed here will
be a standard linear analysis, valid near the transition.2.1. L imitations of the mathematical model

The method of the variational equations followed here This method assumes that there is no interaction between
modes, which implies that the selected wave vector willallowed the linear dynamic equations (6) and (8) for the

perturbations of the director ® eld jh and the velocity correspond to the fastest growing mode of the instability.
Consider a bounded sample in the OY direction with® eld j v , respectively, to be obtained. Attention must be

given now to the equation for u (t ). The requirement thickness d. For planar boundary conditions, correspond-
ing to the twist FreÂ edericksz geometry when a= 90ß , onethat u (t) should vanish at t = 0 allows equation (4) to
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520 J. P. Casquilho

has [10] transition, which is for the non-zero selected wave vector

qy= p/d (13) qz (lmax )= 0. (14)
In the linear theory, the selected wave vector will be In consequence, one seeks the solutions of equationthe value of qz that corresponds to the maximum growth

rate of the instability. For the system (6, 8) the growth ql+ /qqz = 0. (15)
rate is the eigenvalue l+ given by equation (A2). The
plot of l+ (qz ) with the angle a as a control parameter, One solution of equation (15) is
for a given magnetic ® eld, is shown in ® gure 2, for the

qz = 0. (16)viscoelastic parameters of PAA in the table. This shows
the following behaviour: the system becomes unstable Solving equation (A7) for cos 2ac and inserting (13) andat a critical angle ac1 $ 46ß , obtained by inspection of (16) in it yields for the ® rst critical anglethe curves of l+ . But above this transition, for a certain
range of values of the angle a, the maximum growth cos 2ac1 = Õ K 2 (p/d )

2
/xa H

2 (17 a)
rate is kept at qz = 0. Therefore here the fastest growth
rate corresponds to an aperiodic distortion. A second or
transition happens at another critical value ac2 , when
qz (lmax ) goes continuously from zero to non-zero values. cos 2ac1 = Õ AH *

H B
2

(17 b)
This is a transition to a periodic state and is a dynamical
equivalent of a second order phase transition, where the

wherewavevector qz (lmax ) plays the role of the order parameter
[23]. This second critical angle can be obtained by

H * = (K 2 p
2
/xa d

2
)
1/2 (18)solving in order to a the equation de® ning the second

is the critical ® eld for the aperiodic twist FreÂ edericksz
transition [1]. This shows that a ® eld H >H * is
required. The resolution of equation (17) for the values
of PAA in the table gives ac1 = 46ß , in agreement with
the graphical result.

In order to get an analytical solution for ac2 in terms
of the material and other control parameters, one seeks
to solve equation (14) starting with a simpler expression
for the growth rate than l+ given by (A2). For this,
following [9± 14], the inertial term will be dropped
in equation (8). This procedure is equivalent to the
adiabatic approximation [24], which consists of looking
at the system (6, 8) as consisting of equations of motionFigure 2. Plot of l+ given by equation (12) as a function of
for two variables, one of which is s̀laved’ by the other.qz (parameters of PAA with xa H

2 = 1 erg cmÕ
3 and with

In the physical problem under study, since the velocityqy = p Ö 102 cmÕ
1 ). (1) a= 46ß ; (2) a= 47ß ; (3) a= 48ß ;

(4) a= 49ß ; (5) a= 50ß . The system becomes unstable at results from a back¯ ow driven by the (magnetic)
ac1 $ 46ß , but the periodic distortion is only selected reorientation of the director, one can say that the system
at ac2 $ 47ß . is damped for dh0 /dt = 0. On account of this, one may

solve equation (8) approximately by putting dv0 /dt = 0
and solving in order to v0 :Table Parameters used in the numerical simulations. ai in

g cmÕ
1 sÕ 1 ; K i in 10Õ

7 dyn.

v0 =
a2

c1

a

c
qz h0 . (19)PAA PBG [12]

a1 = 0.043 [2] a1 = Õ 36.7 This means that v0 (t) immediately follows h0 and in thisa2 = Õ 0.069 [2] a2 = Õ 69.2
sense one can say that v0 is s̀laved’ by h0 . The substitutiona3 = Õ 0.002 [2] a3 = 0.20
of v0 given by (19) in equation (6) results in the followinga4 = 0.068 [2] a4 = 3.48

a5 = 0.047 [2] a5 = 66.1 equation for h0 :
K 1 = 4.8 [1] K 1 = 12.1
K 2 = 3.4 [1] K 2 = 0.78
K 3 = 9.9 [1] K 3 = 7.63 cef

dh0

dt
= Õ ah0 (20)
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521Pattern formation in nematics

with a given by equation (7) and where cef is an eVective
viscosity given by

cef = c1 Õ
a

2
2

gc+ ga (q
2
y /q

2
z )

. (21)

The substitution of the ansatz (A1) for h0 in equation (20)
yields for the growth rate s

s (q )= Õ a/cef . (22)

This growth rate leads to the same bifurcation set as
de® ned by equation (A7) (which is the interesting set in

Figure 3. Plot of the square of the reduced wave vector giventhe case of real wave vectors as discussed in the Appendix)
by equation (24) as a function of the square of the reducedand is much simpler to manipulate algebraically than
magnetic ® eld, for the same parameters as for ® gure 2.(A2). Expression (22) with a= 90ß in (7) reduces to the (1) a= 90ß ; (2) a= 70ß ; (3) a= 50ß . This shows that the

one obtained by [10] in the study of the periodic twist periodic mode becomes cut oV at a higher reduced ® eld
FreÂ edericksz transition. A numerical plot of the growth when the angle a goes from 90ß to lower values.
rates de® ned by l+ and s as a function of qz for PAA
and with r = 1 g cmÕ

3 shows an excellent agreement
between the two curves, except in the case of large Equations (17 b) and (26) show that the second critical
samples and small values of qz . In this case, the inertial angle ac2 >ac1 and depends on three ratios of theterm cannot be neglected. In the limit d � 2 and qz � 0 control parameters: the ratio of the critical aperiodicthe adiabatic approximation breaks down, since it is the FreÂ edericksz ® eld to the applied ® eld as in the ® rstinertial term that prevents the divergence of v0 predicted transition, the viscosity ratio gac1 /a

2
2 and the elastic ratioby equation (19).

K 3 /K 2 . One can see that for materials where the productTo determine the non-zero value of the selected wave of these two viscoelastic ratios departs signi® cantly fromvector in the adiabatic approximation, one solves in
zero, the second critical angle can be distinctly diVerentorder to q

2
z the equation

from the ® rst critical angle. Such a case is shown in
qs/qq

2
z = 0. (23) ® gure 4 for PAA, a low molecular mass liquid crystal

(LMWLC) for which the above product of viscoelasticScaling the solution of this equation by the sample
ratios if 1.46. Also in ® gure 4 is shown the case of PBG,dimension, one gets
a polymer liquid crystal (PLC) with viscoelastic para-
meters also shown in the table, and for which the

Aqz

qyB
2

=

Õ gagc c1 K 3 + {a
2
2 gagc K 3

Ö [gac1 K 3 Õ gc gbend K 2 (1 + h
2 cos 2a)]}

1/2

g
2
c gbend K 3

(24)

where h = H /H * is the reduced ® eld with H * given by
equation (18). Figure 3 shows that the periodic mode is
cut oV at a higher reduced ® eld when the angle a goes
from 90ß to lower values. Solving equation (24) at the
transition point [qz (smax )= 0] gives the relation

Õ h
2 cos 2ac2 = 1 +

gac1

a
2
2

K 3

K 2
. (25)

This equation shows that, if h is ® xed, a critical value of
a can be found below which the periodic pattern may
not appear, and vice-versa.

Figure 4. Critical angles as a function of the sample dimen-3.1. Critical angle
sion. These curves provide evidence for the existence ofSolving equation (25) in order to the angle a and critical sample dimensions related to both the aperiodic

using (13) and (18) yields and the periodic transitions (see text). (1) ac1 PBG;
(2) ac2 PBG (dc1 $ dc2 = 4 mm) (with xa H

2 = 5 ergcmÕ
3 );

(3) ac1 PAA (dc1 = 18 mm); (4) ac2 PAA (dc2 = 28 mm) (withcos 2ac2 = Õ AH *

H B
2

A1 +
gac1

a
2
2

K 3

K 2B. (26)
xa H

2 = 1 ergcmÕ
3 ).
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522 J. P. Casquilho

product of the two ratios is 0.25 and as a consequence at a critical angle given by cos 2ac1 = Õ (H * /H )2, where
H * is the critical FreÂ edericksz ® eld. This transitionthe curves for both critical angles nearly collapse into

the same curve. corresponds to that determined by a static stability
analysis [20, 21] which allowed it to be classi ® ed as the

3.2. Critical sample thickness equivalent of a second order phase transition.
Equations (17) and (26) make evident critical values The second transition, at a critical angle ac2 >ac1 ,

dc for the sample thickness for a given ® eld, below which to a periodic distorted state, depends also on several
there is no critical angle ac < 90ß , as shown in ® gure 4. viscoelastic parameters, as shown by equation (26).
From (17) we get the ® rst critical sample thickness dc1 This second transition is equivalent to a second order
that separates the homogeneous reorientation from the phase transition, where the wave vector corresponding
aperiodic reorientation to the maximum growth rate of the instability plays

the role of the order parameter. The results show thatdc1 = pj2 (27)
the periodic mode is cut oV at a higher reduced ® eld

where j2 is the twist magnetic coherence length [1] h = H /H * when the angle a goes from 90ß to lower values.
de® ned by j

2
2 = K 2 /xa H

2. Critical sample thicknesses can be put in evidence for
From equations (26) and (27) we get the second critical both the aperiodic and the periodic director reorientations

sample thickness dc2 , which separates the aperiodic from for a given magnetic ® eld. The ® rst critical thickness,
the periodic distorted reorientation separating the homogeneous from the aperiodic deformed

state, is proportional to the magnetic coherence length.
dc2 = dc1A1 +

gac1

a
2
2

K 3

K 2B
1/2

. (28) This indicates that only the interplay between the elastic
coupling to the surface and the orientation in the bulk
is important in order to determine the transition to theThe existence of a critical sample thickness for the
aperiodic distorted state. The second critical thickness,development of a periodic pattern shows up in experi-
separating the aperiodic from the periodic distortedmental results for the dynamics of a nematic PLC in a
state, has further contributions from viscosity and elasticFreÂ edericksz geometry [16], where it was observed that
parameters, as shown by equation (28).in thin cells the periodic reorientation is replaced by a

The analytical solutions (26) or (28) allow the con-uniform reorientation. Moreover, the observed periodic
clusion that the value of the ratios of the viscoelasticvariation of the director in [16] is two dimensional,
parameters therein indicates how much the secondwhich supports the single distortion angle description of
transition will depart from the ® rst. This value is athe director used in this work.
measure of the compromise between the reduction ofTo conclude this section, the results obtained from
viscosity of the fastest growing modes (with short wave-the preceding results by putting d � 2 or qy= 0 are
lengths and low viscosity) and the reduction of elasticanalysed. This case corresponds to a pure bend distortion
energy of the slower modes (with long wavelengths andin an unbounded sample. In this case, both transitions
high viscosity, but energetically favoured) .collapse at the same critical point a= 45ß , as predicted

by equations (17) and (26) when d � 2 and shown in
® gure 4. This means that in this case the transition is

The author wishes to thank Prof. A. F. Martins andonly to a periodic director ® eld. It is interesting that,
Prof. J. Figueirinhas for helpful comments. The authoralthough a= 45ß is out of the range of values of a of
also wishes to thank the referee for his detailed commentsvalidity for the linear theory, as discussed above, this
on the original manuscript, which helped to improveexplains results from NMR magnetic reorientation
this paper. This work was partly ® nanced by JNICT ofexperiments with large samples, where the onset of a
Portugal under research contract PBIC/C/CEN/1049/92.periodic distortion is at angles ac $ 45ß [3, 5, 6].

4. Conclusions
AppendixThe linear theory of the magnetic ® eld induced

L inear stability analysis of a twist-bend instabilityinstabilities in the reorientation of the nematic director
The system (6, 8) consists of two ® rst order, ordinary,in non-FreÂ edericksz geometries (H not normal to n0 )

linear diVerential equations for the amplitudes of thepredicts that when the control parameter is the angle of
perturbations. It is a dynamical system that can bethe magnetic ® eld to the initial homogeneous director
solved in a standard manner by the hypothesis® eld, two transitions from a homogeneous to a distorted

director ® eld reorientation are possible.
For bounded samples between two parallel plates,

v0 (t)= v0 (0 ) exp(lt )

h0 (t)= h0 (0 ) exp(lt).
(A1)

the ® rst transition, to a non-periodic deformed state, is
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The local dynamical and structural stability properties where
at the transition point are determined by the eigenvalues
of the stability matrix F ij ; qF i /qj , where the functions b = A1 +

1

mtwistBK 2 q
2
y + A1 +

1

mbendBK 3 q
2
z

F ij , i, j ; v0 , h0 , are de® ned in equations (6) and (8).
These eigenvalues are given by + xa H

2 cos 2a (A9)

lÔ
= (d Ô Ó v

2
)/2 (A2) and where

with
mtwist=

K 2 /c1

ga /r
(A10)

d = Õ Aa

c1
+

c

rB (A3) and

where a is de® ned by equation (7) and mbend =
K 3 /gbend

gc /r
(A11)

v
2 = d

2 Õ 4D (A4)
are dimensionless quantities that may be interpreted as

where D is the determinant of the stability matrix, given the ratio of two diVusion constants [1]. The critical
by point is a stable focus if d<0 and an unstable focus if

d>0 [22], the bifurcation set being de® ned by
D =

a

rc1
(ga q

2
y + gc q

2
z ). (A5) d = 0 (A12)

which implies by (A8)When both eigenvalues are real and unequal, the
system is locally equivalent to a gradient system [22]. b = 0. (A13)
In this case there is a bifurcation when one or both

When comparing the bifurcation sets given byeigenvalues assume the value zero, which implies a zero
equations (A7) and (A13), one can see that the transitiondeterminant of the stability matrix and de® nes the
points can be signi® cantly diVerent, because the addi-bifurcation set
tional terms in (A9) stem from the inverse of the quantity
m, which is usually very small (except in the case of highD = 0. (A6)
molecular mass polymer liquid crystals where it can be

For gradient-like systems with eigenvalues (+ , +), of the order of unity). For real wave vectors, c de® ned
(Ô , 7 ) or (Õ , Õ ) the critical point is an unstable node, by equation (9) is always positive. Since before the
a saddle or a stable node, respectively. The resolution transition de® ned by equation (A7) the system is in a
of equation (A6) yields for real wave vectors the critical state with a >0, this means by (A3) that d<0, which
point implies, according to (A12), that the unperturbed state

is stable. We can then conclude that for real wave vectors
a = 0. (A7)

the transition happens at a = 0. Finally, from equations
(A6, A7) and (A12, A13) follows the conclusion that theThis result is the same equation as that found for the
inertial term in the velocity equation must be kept incritical point in a static analysis with the wave vector as
order to get the transition (A13).a free parameter [20, 21], which is consistent with the

fact that for real eigenvalues the dynamical system (6, 8)
Referencesis locally equivalent to a gradient system. In [20, 21] it

[1] De Gennes, P. G ., and Prost, J., 1993, T he Physics ofwas shown that this transition is the equivalent of a
L iquid Crystals, 2nd Edn (Oxford: Clarendon Press).second order phase transition. As in the static case, the

[2] Chandrasekhar, S., 1994, L iquid Crystals, 2nd Ednstate with a <0 is the unstable state.
(Cambridge University Press).

In the case of real wave vectors, since the viscosities [3] Filas, R. W ., Hadjo, L. E., and Eringen, A. C.,
c1 , ga and gb are positive, we see from (A2± A5) that a 1974, J. chem. Phys., 61, 3037; Orwoll, R. D ., and

Vold, R. L., 1971, J. Am. chem. Soc., 93, 5335;su� cient condition for real l Ô is a < 0, that is to say at
Filas, R. W ., 1978, Mesomorphic Polymers andor above the transition. If a >0 the eigenvalues may be
Polymerization in L iquid Crystalline Media, edited bycomplex. In this case the stability properties of the A. Blumstein, ACS Symposium Series 74 (Washington

system (6, 8) are determined by the sign of the real part DC: ACS), Chap. II.
of the eigenvalues [22] that by equations (A3), (7) and [4] Hui, Y. W ., Kuzma, M . R., San M iguel, M ., and

Labes, M . M ., 1985, J. chem. Phys., 83, 288.(9) can be written
[5] Martins, A. F., Esnault, P., and Volino, F., 1986,

Phys. Rev. L ett., 57, 1745.d = Õ b/c1 (A8)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
2
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



524 Pattern formation in nematics

[6] Esnault, P., Casquilho, J. P., Volino, F., [15] Buka, A., and Kramer, L., 1992, J. Phys. II Fr., 2, 315;
Buka, A., and Kramer, L., 1992, Phys. Rev. A, 45, 5624.Martins, A. F., and Blumstein, A., 1990, L iq. Cryst.,

7, 607. [16] Schwenk, N ., and Spiess, H . W ., 1993, J. Phys. II Fr.,
3, 865.[7] Gotzig, H., Grunenberg-Hassanein, S., and Noack, F.,

1994, Z. Naturforsch., 49a, 1179. [17] Brochard, F., Pieranski, P., and Guyon, E., 1972,
Phys. Rev. L ett., 28, 1681; Pieranski, P., Brochard, F.,[8] Hughes, J. R., Luckhurst, G . R., and Picken, S. J.,

1994, 15th International Liquid Crystal Conference. and Guyon, E., 1973, J. Physique, 34, 35.
[18] Karn, A. J., Shen, Y. R., and Santamato, E., 1990,[9] Guyon, E., Meyer, R., and Salan, J., 1979, Mol. Cryst.

liq. Cryst., 54, 261. Phys. Rev. A, 41, 4510.
[19] K ini, U . D ., 1991, L iq. Cryst., 10, 597; K ini, U . D ., 1992,[10] (a) Lonberg, F., Fraden, S., Hurd, A., and Meyer, R. B.,

1984, Phys. Rev. L ett., 52, 1903; (b) Hurd, A. J., L iq. Cryst., 12, 449.
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